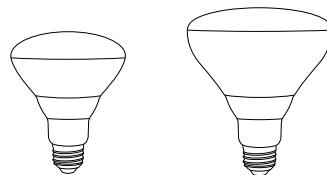

ULINE

LIGHTING GUIDE

SIZE/SHAPE

A SERIES

Standard bulb for everyday use

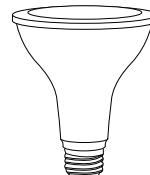


A19

A21

BR SERIES

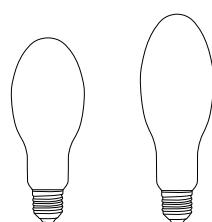
Common bulb for overhead can lights



BR30

BR40

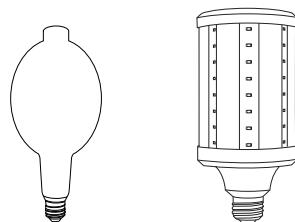
PAR SERIES


Common bulb for floodlights

PAR38

ED SERIES

Large bulbs for tall ceilings and larger areas

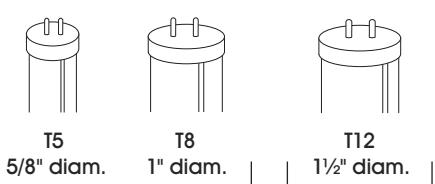


ED28

ED37

BT SERIES/CORN COB

Large bulbs for warehouses and factories



BT56

Corn Cob

LINEAR TUBES

Linear lights for office and residential ceilings

T5
5/8" diam.

T8
1" diam.

T12
1 1/2" diam.

LED and
Fluorescent

Fluorescent
Only

WATTS/LUMENS

WATTS

Watts measure energy consumption.

LUMENS

Lumens measure visible light energy. The higher the lumens, the brighter the light.

LED WATTS	INCANDESCENT WATTS	LUMENS
7-9 W	60 W	700-900
14-16 W	100 W	1,400-1,600

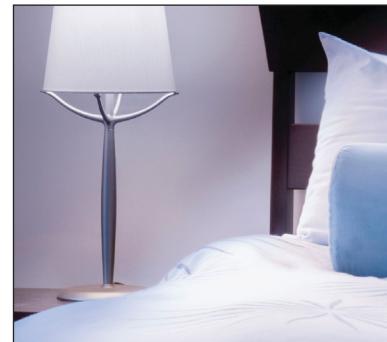
Note: Watt-to-lumen ratio may vary depending on the bulb.

1-800-295-5510 uline.com

COLOR TEMPERATURE

Color temperature describes the hue and tone of white that a light bulb emits. It is measured numerically on the Kelvin degrees scale. The lower the Kelvin value of a bulb, the more orange the light will appear. The higher the Kelvin value, the bluer the light will appear.

COLOR TEMPERATURE (KELVIN)	2,700K – 3,500K	3,600K – 4,900K	5,000K – 6,500K
LIGHT APPEARANCE	Warm White	Cool White	Daylight
AMBIENCE	Calming	Focus	Crisp, Invigorating
APPLICATION	Homes, Restaurants, Hospitality	Retail, Office, Schools, Showrooms	Warehouse, Manufacturing, Healthcare

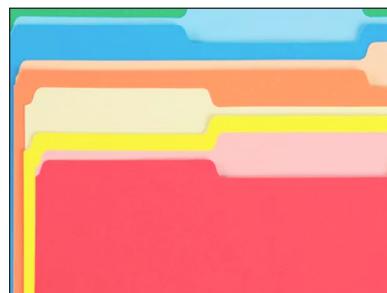

2,700 – 3,500K

3,600 – 4,900K

5,000 – 6,500K



COLOR RENDERING INDEX (CRI)


The Color Rendering Index (CRI) measures how accurately a light bulb shows color as compared to natural light.

- It is a scale from 0–100% with 100% representing the most vivid, true-to-life color.
- Light bulbs with CRI ratings between 80–89 provide good color rendering.
- Light bulbs with CRI ratings of 90 or higher provide excellent color rendering and are suitable for use in photo studios and other color-critical applications.


≤ 79 CRI

80–89 CRI

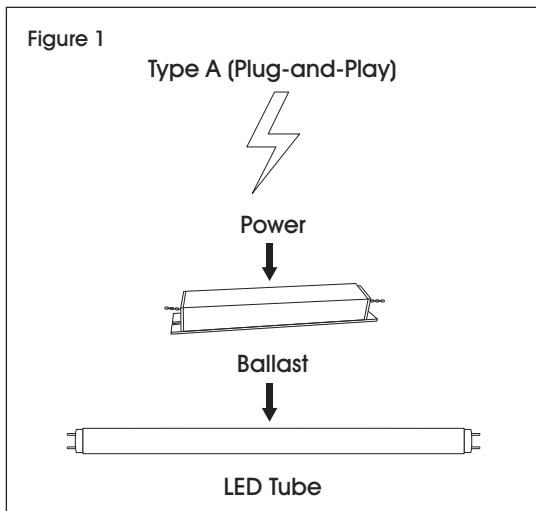
≥ 90 CRI

1-800-295-5510 uline.com

LED VS FLUORESCENT

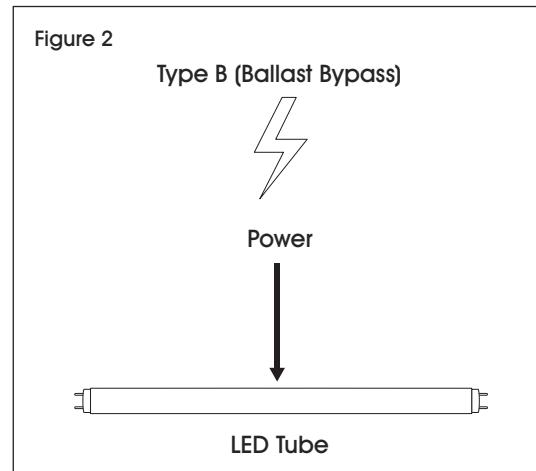
LED

- Uses diodes powered by electricity to emit light
- Longer lifespan than traditional lighting
- More energy efficient
- Available in plastic or glass


FLUORESCENT

- Emits light through chemical reaction with electricity
- Shorter lifespan than LED
- Less energy efficient
- Only available in glass
- Ballast required

TYPE A (PLUG-AND-PLAY) VS TYPE B (BALLAST BYPASS)


TYPE A – PLUG-AND-PLAY LED

- Do not require any rewiring since they operate with the fixture's existing ballast, so long as they are compatible with each other. (See Figure 1)
- **NOTE:** Not every plug-and-play bulb is compatible with every ballast, so it is important to confirm compatibility before replacing a fluorescent bulb with an LED bulb for energy and cost savings.

TYPE B – BALLAST BYPASS LED

- Ballast bypass is when you remove a ballast from the electrical circuit that goes to your light fixture upon initial installation.
- Since the ballast sits between the power source and the light fixture, this requires either removing the ballast completely or simply disconnecting the ballast and wiring the light fixture straight into the power source.
- Because the light bulb is powered directly by the power source, failure points are reduced and compatibility issues are eliminated. (See Figure 2)

